自然常数e
编辑:列表君 时间:2024-02-17 06:28:49来源:列表在线网
自然常数e的由来
自然常数e的由来如下:在18世纪初,数学大师莱昂哈德·欧拉发现了这个自然常数e。当时,欧拉试图解决由另一位数学家雅各布·伯努利在半个世纪前提出的问题。伯努利的问题与复利有关。假设你在银行里存了一笔钱,银行每年以100%的利率兑换这笔钱。一年后,你会得到(1+100%)^1=2倍的收益。现在假设银行每六个月结算一次利息,但只能提供利率的一半,即50%。在这种情况下,一年后的收益为(1+50%)^2=2.25倍。根据这个规律,可以得到一条通式。如果假设n为利息复利的次数,那么利率就是其倒数1/n。一年后的收益公式为(1+1/n)^n。如果n变得无限大,那(1+1/n)^n是否也会变得无限大?这就是伯努利试图回答的问题,但直到50年后才由欧拉最终获得结果。原来,当n趋于无穷大时,(1+1/n)^n并非也变得无穷大,而是等于2.718281828459……这是一个类似于圆周率的无限不循环小数,用字母e表示,被称为自然常数。
自然常数e的由来
e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔引进对数。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。
在1690年,莱布尼茨在信中第一次提到常数e。在论文中第一次提到常数e,是约翰·纳皮尔于1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉·奥特雷德制作。第一次把e看为常数的是雅各·伯努利。