列表网_列表在线网
列表在线网 > 知识列表 >

学子斋八年级上册数学

编辑:列表君 时间:2024-02-17 20:12:54来源:列表在线网

数学八年级上册知识点归纳

  想要了解初二数学知识点的小伙伴,赶紧来瞧瞧吧!下面由我为你精心准备了“数学八年级上册知识点归纳”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!   数学八年级上册知识点归纳   一次函数   (1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数。   (2)正比例函数图像特征:一些过原点的直线。   (3)图像性质:   ①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k<0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小。   (4)求正比例函数的解析式:已知一个非原点即可。   (5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)。   (6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数。   (7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)。   (8)一次函数图像特征:一些直线。   (9)性质:   ①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0,向上平移;当b<0,向下平移)   ②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;   ③当k<0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;   ④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);   ⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);   (10)求一次函数的解析式:即要求k与b的值;   (11)画一次函数的图像:已知两点。   用函数观点看方程(组)与不等式   (1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;   (2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;   (3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;   (4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标。   拓展阅读:初二数学复习方法有哪些   一、克服心理疲劳   第一,要有明确的学习目的。学习就像从河里抽水,动力越足,水流量越大。动力来源于目的,只有树立正确的学习目的,才会产生强大的学习动力;   第二,要培养浓厚的学习兴趣。兴趣的形成与大脑皮层的兴奋中心相联系,并伴有愉快、喜悦、积极的情绪体验。而心理疲劳的产生正是大脑皮层抵制的消极情绪引起的`。因此,培养自己的学习兴趣,是克服心理疲劳的关键所在。有了兴趣,学习才会有积极性、自觉性、主动性,才能使心理处于一种良好的竞技状态;   第三,要注意学习的多样化,书本学习本身就是枯燥单调的,如果多次重复学习某门课程或章节内容,易使大脑皮层产生抑制,出现心理饱和,产生厌倦情绪。所以考生不妨将各门课程交替起来进行复习。   二、战胜高原现象   复习中的高原现象,是指在复习到一定时期时,往往停滞不前,不仅复习不见进步,反而有退步的现象。在高原期内,并非学习毫无进步,而是某部分进步,另外一些部分则退步,两者相抵,致使复习成效未从根本上发生变化,因而使人灰心失望。当考生在复习迎考过程中遭遇高原期时,切忌急躁或丧失信心,应找出学习方法、学习积极性等方面的原因。及时调整复习进度,在科学用脑、提高复习效率上多下功夫。   三、重视复习“错误”   如果在复习中不善于从错误中走出来,缺陷和漏洞就会越来越多,任其下去,最终就会蚁穴溃堤。在备考期间,要想降低错误率,除了及时订正、全面扎实复习之外,非常关键的问题就是找出原因,不断复习错误。即定期翻阅错题,回想错误的原因,并对各种错题及错误原因进行分类整理。对其中那些反复错误的问题还可考虑再做一遍,以绝“后患”。错误原因大致有:概念理解上的问题、粗心大意带来的问题以及书写潦草凌乱给自己带来的错觉问题等,从而有效地避免在考试时再犯同一类型的错误。   四、把握心理特点搞好考前复习   实践证明,一个人在气质、性格、心理稳定程度等因素也会影响考前复习。考生在复习迎考过程中,应根据自己的心理特点来制订复习迎考计划,根据自己的心态来调整复习的进度,选择与运用的复习方式方法,使自己的考前复习达到预期的效果。   1、课本不容忽视   对于初二的学生来说,都在学习新课,课本是大家都容易忽视的一个重要的复习资料。平时在学校的课堂上大家都会随堂记笔记,课本基本不会翻看,建议同学们在翻看笔记的同时,对照课本,把学过的知识点反复阅读、理解,并对照课后练习里的习题进行反复思考、琢磨、融会贯通,加深对知识点的理解。对于课本上的重点内容、重点例题也要着重记忆。   2、错题本   相信学习习惯好的学生都应该有一本错题本,把每次习题、作业、测试中的错题抄录下来,明确答案,找到错误原因,发现自己知识和能力上的薄弱点,经常拿出来翻看,遇到反复做错的题目,要主动和同学商量,向老师请教,彻底把题目弄懂、弄透,以免再犯同类错误。

初中八年级数学上册知识点

为了方便大家复习八年级上册的数学知识点,现将我整理出来的知识点给大家分享出来,供大家学习参考! 勾股定理 1.在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a 2 +b 2 =c 2 。 2.勾股定理的逆定理:勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边:如果a²+b²=c²,则△ABC是直角三角形。 一次函数 (一)一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx+b(k为常数,k≠0),y叫做x的正比例函数。 (二)函数三要素 1.定义域:设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。 2.在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。 3.对应法则:一般地说,在函数记号y=f(x)中,“f”即表示对应法则,等式y=f(x)表明,对于定义域中的任意的x值,在对应法则“f”的作用下,即可得到值域中唯一y值。 (三)一次函数的表示方法 1.解析式法:用含自变量x的式子表示函数的方法叫做解析式法。 2.列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。 3.图像法:用图象来表示函数关系的方法叫做图象法。 (四)一次函数的性质 1.y的变化值与对应的x的变化值成正比例,比值为k。即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。 2.当x=0时,b为函数在y轴上的交点,坐标为(0,b)。当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。 3.k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。 4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。 5.函数图象性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直。 6.平移时:上加下减在末尾,左加右减在中间。 图形的平移与旋转 1.平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。 2.平移性质 (1)图形平移前后的形状和大小没有变化,只是位置发生变化。 (2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等。 (3)多次连续平移相当于一次平移。 (4)偶数次对称后的图形等于平移后的图形。 (5)平移是由方向和距离决定的。 (6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行(或共线)且相等。 3.旋转,在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。 4.旋转的性质:旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。

相关阅读