第三次数学危机
第三次数学危机的定义
为了讲清楚第三次数学危机的来龙去脉,我们首先要说明什么是数学危机。 一般来讲,危机是一种激化的、非解决不可的矛盾。 从哲学上来看,矛盾是无处不在的、不可避免的,即便以确定无疑著称的数学也不例外。 数学中有大大小小的许多矛盾,比如正与负、加法与减法、微分与积分、有理数与无理数、实数与虚数等等。 但是整个数学发展过程中还有许多深刻的矛盾,例如有穷与无穷,连续与离散,乃至存在与构造,逻辑与直观,具体对象与抽象对象,概念与计算等等。 在整个数学发展的历史上,贯穿着矛盾的斗争与解决。 而在矛盾激化到涉及整个数学的基础时,就产生数学危机。 矛盾的消除,危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。 整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。
三次数学危机分别是什么
数学三大危机是达哥拉斯悖论、贝克莱悖论和罗素悖论。1、第一次数学危机:毕达哥拉斯悖论毕达哥拉斯学派在数学上的一项重大贡献是证明了毕达哥拉斯定理,也就是我们所说的勾股定理。勾股定理指出直角三角形三边应有如下关系,即a^2=b^2+c^2,a和b分别代表直角三角形的两条直角边,c表示斜边。然而不久毕达哥拉斯学派的一个学生希伯斯很快便发现了这个论断的问题。他发现等腰直角三角形两直角边为1时,斜边永远无法用最简整数比(有理数)来表示,从而发现了第一个无理数,希伯斯推翻了毕达哥拉斯的着名理论。相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希伯斯抛入大海。第一次数学危机极大地促进了几何学的发展,使几何学在此后两千年间成为几乎是全部严密数学的基础,这不能不说是数学思想史上的一次巨大革命。2、第二次数学危机:贝克莱悖论十七世纪后期,牛顿和莱布尼兹创立了微积分,在实践中取得了巨大成功。然而,微积分学产生伊始,迎来的并非全是掌声,在当时它还遭到了许多人的强烈攻击和指责,原因在于当时的微积分主要建立在无穷小分析之上,而无穷小后来证明是包含逻辑矛盾的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。第二次数学危机的出现,迫使数学家们不得不认真对待无穷小量△x,为了克服由此引起思维上的混乱,解决这一危机,无数人投入大量的劳动。3、第三次数学危机:罗素悖论十九世纪下半叶,康托尔创立了着名的集合论,集合论是数学上最具革命性的理论,初衷是为整个数学大厦奠定坚实的基础。可是1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的着名的罗素悖论。这一悖论就象在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。时至今日,第三次数学危机还不能说已从根本上消除了,因为数学基础和数理逻辑的许多重要课题还未能从根本上得到解决。然而,人们正向根本解决的目标逐渐接近。
数学史上三次危机分别是,数学史上第三次数学危机
1.数学发展史上的三次危机无理数的发现:第一次数学危机:公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。
2.这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。
3.第二次数学危机:18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。
4.1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础即无穷小的问题,提出了所谓贝克莱悖论。
5.由此而引起了数学界甚至哲学界长达一个半世纪的争论。
6.导致了数学史上的第二次数学危机。
7.第三次数学危机:数学史上的第三次危机,是由1897年的突然冲击而出现的,这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。