二次函数的定义
二次函数的定义是什么?
a、b、c是常数。一般地,把形如 (a、b、c是常数)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。顶点坐标 交点式为 (仅限于与x轴有交点的抛物线),与x轴的交点坐标是 和 。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。扩展资料函数性质:1、二次函数的图像是抛物线,但抛物线不一定是二次函数。开口向上或者向下的抛物线才是二次函数。抛物线是轴对称图形。对称轴为直线 。 对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。2、抛物线有一个顶点P,坐标为P 。当 时,P在y轴上;当 时,P在x轴上。3、二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。4、一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧。(可巧记为:左同右异)5、常数项c决定抛物线与y轴交点。抛物线与y轴交于(0, c)参考资料:百度百科-二次函数
什么是二次函数
二次函数的基本表示形式为y=ax²+bx+c(a≠0)。含义:二次函数(quadratic function)的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。二次函数的判断方法:①函数关系式是整式;②化简后自变量的最高次数是2;③二次项系数不为0。二次函数的解析式的作用:从做题的角度来说,它的作用很简单,就是:给出一个x的值,就可以求出对应的y值;给出一个y值,也可以求出对应的x值;简单的说,就是由x求y,或者由y求x的,就这么点儿用。基本图像:在平面直角坐标系中作出二次函数y=ax2+bx+c的图像,可以看出,在没有特定定义域的二次函数图像是一条永无止境的抛物线。 如果所画图形准确无误,那么二次函数图像将是由y=ax2平移得到的。开口:二次项系数a决定二次函数图像的开口方向和大小。当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。|a|越大,则二次函数图像的开口越小。决定位置因素:一次项系数b和二次项系数a共同决定对称轴的位置。当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a。当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号。可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a>0,b>0或a。事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。决定交点因素:常数项c决定二次函数图像与y轴交点。二次函数图像与y轴交于(0,C)点。注意:顶点坐标为(h,k), 与y轴交于(0,C)。二次函数的历史:大约在公元前480年,古巴比伦人和中国人已经使用配方法求得了二次方程的正根,但是并没有提出通用的求解方法。公元前300年左右,欧几里得提出了一种更抽象的几何方法求解二次方程。7世纪印度的婆罗摩笈多是第一位懂得使用代数方程的人,它同时容许有正负数的根。11世纪阿拉伯的花拉子密 独立地发展了一套公式以求方程的正数解。亚伯拉罕·巴希亚(亦以拉丁文名字萨瓦索达著称)在他的著作Liber embadorum中,首次将完整的一元二次方程解法传入欧洲。据说施里德哈勒是最早给出二次方程的普适解法的数学家之一。但这一点在他的时代存在着争议。这个求解规则是:在方程的两边同时乘以二次项未知数的系数的四倍;在方程的两边同时加上一次项未知数的系数的平方;然后在方程的两边同时开二次方(引自婆什迦罗第二)
什么是二次函数?
二次函数是指具有以下形式的函数:y = ax^2 + bx + c,其中a、b和c都是常数,且a不等于零。二次函数的图像通常呈现出平滑的弧线,称为抛物线。
二次函数的性质如下:
1. 对称性:二次函数的图像关于垂直方向的直线 x = -b/(2a) 对称。也就是说,对于给定的二次函数图像,在该直线左右两侧的点的y值完全相同。
2. 开口方向:二次函数的开口方向由a的正负决定。当a大于零时,抛物线开口向上;当a小于零时,抛物线开口向下。
3. 零点和轴对称点:二次函数的零点是使得y等于零的x值,可以通过求解方程ax^2 + bx + c = 0得到。轴对称点是抛物线的顶点,其x坐标为-x坐标的二分之一。
4. 最值点:当抛物线开口向上时,二次函数的最小值发生在轴对称点上;当抛物线开口向下时,二次函数的最大值发生在轴对称点上。
5. 增减性:当a大于零时,随着x增大,二次函数的值逐渐增加;当a小于零时,随着x增大,二次函数的值逐渐减小。
6. 范围:二次函数的范围取决于开口方向。当抛物线开口向上时,范围为所有正实数;当抛物线开口向下时,范围为所有负实数。
总结起来,二次函数的图像是一个平滑的抛物线,具有对称性、开口方向、零点和轴对称点、最值点、增减性和范围等性质。这些性质在解决数学问题、分析曲线走势和预测趋势等方面都具有重要的应用价值。