列表网_列表在线网
列表在线网 > 知识列表 >

十字相乘法解一元二次方程

编辑:列表君 时间:2024-02-20 09:13:24来源:列表在线网

怎么用十字相乘法解一元二次方程啊..?

十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。  十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两 十字相乘法个因数a1,a2的积a1.a2,把常数项c分解成两个因数c1,c2的积c1乘c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。 基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把x^2+7x+12进行因式分解. .  上式的常数12可以分解为3×4,而3+4又恰好等于一次项的系数7,所以上式可以分解为:x^2+7x+12=(x+3)(x+4) .  又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5×(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3).  讲解:  x-3x+2=如下:  x -1  ╳  x -2  左边x乘x=x  右边-1乘-2=2  中间-1乘x+(-2)乘x(对角)=-3x  上边的【x+(-1)】乘下边的【x+(-2)】  就等于(x-1)*(x-2)  x-3x+2=(x-1)*(x-2)例题例1  把2x^2-7x+3分解因式.  分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分  别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.  分解二次项系数(只取正因数 因为取负因数的结果与正因数结果相同!):  2=1×2=2×1;  分解常数项:  3=1×3=3×1=(-3)×(-1)=(-1)×(-3).  用画十字交叉线方法表示下列四种情况:  1 1  ╳  2 3  1×3+2×1  =5  1 3  ╳  2 1  1×1+2×3  =7  1 -1  ╳  2 -3  1×(-3)+2×(-1)  =-5  1 -3  ╳  2 -1  1×(-1)+2×(-3)  =-7  经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.  解 2x^2-7x+3=(x-3)(2x-1)  一般地,对于二次三项式ax+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:  a1 c1  ╳  a2 c2  a1c2+a2c1  按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即  ax+bx+c=(a1x+c1)(a2x+c2).  像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.例2  把6x^2-7x-5分解因式.  分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种  2 1  ╳  3 -5  2×(-5)+3×1=-7  是正确的,因此原多项式可以用十字相乘法分解因式.  解 6x-7x-5=(2x+1)(3x-5)  指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.  对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x+2x-15分解因式,十字相乘法是  1 -3  ╳  1 5  1×5+1×(-3)=2  所以x+2x-15=(x-3)(x+5).


二次项系数不为1的十字相乘法是什么?

没有公式 只是系数之间的转换。二次项的系数,首先要找到二次项,就是未知量的次数和为2的项,然后看她前面的系数。这个系数就是二次项的系数。如果有几个二次项,则有几个二次项系数。例如 2xy 那么它的次数就是2 。若是-xy 那么它的次数就为-1。在一元二次方程或二次函数中,二次项系数的作用是决定函数图像的开口方向和开口大小,同时也运用在分析和求解二次不等式的根中。二次项定理的公式为(a+b)^n=Cn0·a^n+Cn1 ·a^n-1·b+…+Cnr·a^n-r·b^r+…+Cnn·b^n(n∈N﹢)这个公式所表示的规律叫做二次项定理,等式右边的多项式叫做(a+b)^n的二项展开式,它一共有n+1项,其中各项系数Cnr(r=0,1,…,n)叫做展开式的二项式系数。展开式中的Cnr·a^n-r·b^r项叫做二项展开式的通项。当n为奇数时,由1+2+3+4+...+N与s=N+(N-1)+(N-2)+...+1相加得:2s=N+[1+(N-1)]+[2+(N-2)]+[3+(N-3)]+...+[(N-1)+(N-N-1)]+N=N+N+N+...+N加或减去所有添加的二项式展开式数。=(1+N)N减去所有添加的二项式展开式数。当n为偶数时,由1+2+3+4+5+...+N与s=N+(N-1)+(N-2)+...+1相加得:2s=N+[1+(N-1)]+[2+(N-2)]+[3+(N-3)]+[4+(N-4)]...+[(N-1)+(N-N-1)]+N=2N+2[(N-2)+(N-4)+(N-6)+...0或1]加或减去所有添加的二项式展开式数。又当n为偶数时,由1+2+3+4+5+6+...+N与s=N+(N-1)+(N-2)+...+1相加得:2s=[N+1]+[(N-1)+2]+[(N-2)+3]+...+[(N-N-1)+(N-1)]=2[(N-1)+(N-3)+(N-5)+...0或1]加或减去所有添加的二项式展开式数,合并n为偶数时2S的两个计算结果,可以得到s=N+(N-1)+(N-2)+...+1的计算公式。其中,所有添加的二项式展开式数,按下列二项式展开式确定,如此可以顺利进行自然数的1至n次幂的求和公式的递进推导,最终可以推导至李善兰自然数幂求和公式。

求2次项系数不为1的十字相乘公式!

我只能这么说...
先举个例子
3(X的平方)+6X+3=0 可以写成 (3x+3)(x+1)=0
理由可以这样看:二次项可以拆成3x×x,一次项是3x+3x,常数项就是1×3,这样有什么用呢,为什么要这样分呢?这都是通过画图来看的.
3x ...3( 根据上述:画出此图)
x .1
可以发现竖着竖着相乘,分别是二次项和常数项
交叉相乘再相加,就是一次项
在书写的时候,根据符号,横着横着写就是:(3x+3)(x+1)=0
因为在打草稿的时候,会有交叉相乘,就是"十"字,所以叫十字相乘法.
我再举几个例子,你自己体会一下
-2x ...3(分解图)-6x+x+12=0 从而写成(-2x+3)(3x+4)=0
3x .4
这道题要注意,乘得的一次项分别是9x和-8x,做加法运算.得+x
-2x ...-3(分解图)-6x-17x-12=0 写成(-2x-3)(3x+4)=0
3x .4
这道题要注意的是,乘得的一次项分别是-9x和-8x,做加法运算.得-17x
而常数项相乘应该是-12
在实际的运算中,可以借助这种图形来帮助解方程,当然,不可能一样就看出怎样来拆二次项和一次项其常数项,只要多练,就可以很熟练,做题也很快.主要是掌握方法!


相关阅读